A Comparative Study for Arabic Text Classification Based on BOW and Mixed Words Representations
نویسندگان
چکیده
منابع مشابه
A Comparative Study on Arabic Text Classification
This paper focuses on Automatic Arabic classifications. Arabic language is highly inflectional and derivational language which makes text mining a complex task. In classifying Arabic text, there are many published experimental results. Since these results came from different datasets, authors and evaluation metrics, we cannot compare the performance of the experimented classifiers. In this pape...
متن کاملtask-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks
جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...
developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولDistributional Representations of Words for Short Text Classification
Traditional supervised learning approaches to common NLP tasks depend heavily on manual annotation, which is labor intensive and time consuming, and often suffer from data sparseness. In this paper we show how to mitigate the problems in short text classification (STC) through word embeddings – distributional representations of words learned from large unlabeled data. The word embeddings are tr...
متن کاملAn Experimental Study for the Effect of Stop Words Elimination for Arabic Text Classification Algorithms
In this paper, an experimental study was conducted on three techniques for Arabic text classification. These techniques are Support Vector Machine (SVM) with Sequential Minimal Optimization (SMO), Naïve Bayesian (NB), and J48. The paper assesses the accuracy for each classifier and determines which classifier is more accurate for Arabic text classification based on stop words elimination. The a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IJCI. International Journal of Computers and Information
سال: 2016
ISSN: 1687-7853
DOI: 10.21608/ijci.2016.33954